aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Tim Hosgood <timhosgood@gmail.com> 2021-01-31 01:14:22 +0000
committerGravatar Tim Hosgood <timhosgood@gmail.com> 2021-01-31 01:14:22 +0000
commitfd430f849488d64c03a1af5c1a6d8e7e6707a6cd (patch)
treeb3c5d03f77f4bb8d075f8ec04ee6764b84dc02f1
parent6cda5c5c18e93e4689d7d5065cba5b465b9abc9a (diff)
downloadega-fd430f849488d64c03a1af5c1a6d8e7e6707a6cd.tar.gz
ega-fd430f849488d64c03a1af5c1a6d8e7e6707a6cd.zip
fixed error
-rw-r--r--ega2/ega2-2.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/ega2/ega2-2.tex b/ega2/ega2-2.tex
index 89a77d7..cacea42 100644
--- a/ega2/ega2-2.tex
+++ b/ega2/ega2-2.tex
@@ -1003,7 +1003,7 @@ By \sref{II.2.5.16}, we can restrict to the case where $d=1$, and the conclusion
\end{proof}
-\subsection{The graded $S$-module associated to a sheaf on $\Proj(S)$}
+\subsection{The graded $S$-module associated to a sheaf on $\operatorname{Proj}(S)$}
\label{subsection:II.2.6}
\emph{We suppose all throughout this section that the ideal $S_+$ of $S$ is generated by the set $S_1$ of homogeneous elements of degree~$1$.}