aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/hotspot/cpu/x86/macroAssembler_x86.hpp
blob: e12cd1688510f95e519423981bf7a2d2a639c78c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
/*
 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_X86_MACROASSEMBLER_X86_HPP
#define CPU_X86_MACROASSEMBLER_X86_HPP

#include "asm/assembler.hpp"
#include "utilities/macros.hpp"
#include "runtime/rtmLocking.hpp"
#include "runtime/vm_version.hpp"

// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

class MacroAssembler: public Assembler {
  friend class LIR_Assembler;
  friend class Runtime1;      // as_Address()

 public:
  // Support for VM calls
  //
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).

  virtual void call_VM_leaf_base(
    address entry_point,               // the entry point
    int     number_of_arguments        // the number of arguments to pop after the call
  );

 protected:
  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  // returns the register which contains the thread upon return. If a thread register has been
  // specified, the return value will correspond to that register. If no last_java_sp is specified
  // (noreg) than rsp will be used instead.
  virtual void call_VM_base(           // returns the register containing the thread upon return
    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    Register java_thread,              // the thread if computed before     ; use noreg otherwise
    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    address  entry_point,              // the entry point
    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    bool     check_exceptions          // whether to check for pending exceptions after return
  );

  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);

  // helpers for FPU flag access
  // tmp is a temporary register, if none is available use noreg
  void save_rax   (Register tmp);
  void restore_rax(Register tmp);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 // The implementation is only non-empty for the InterpreterMacroAssembler,
 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 virtual void check_and_handle_popframe(Register java_thread);
 virtual void check_and_handle_earlyret(Register java_thread);

  Address as_Address(AddressLiteral adr);
  Address as_Address(ArrayAddress adr);

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset. No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).

  void null_check(Register reg, int offset = -1);
  static bool needs_explicit_null_check(intptr_t offset);
  static bool uses_implicit_null_check(void* address);

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target, const char* file, int line) {
    unsigned char op = branch[0];
    assert(op == 0xE8 /* call */ ||
        op == 0xE9 /* jmp */ ||
        op == 0xEB /* short jmp */ ||
        (op & 0xF0) == 0x70 /* short jcc */ ||
        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
        op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
        "Invalid opcode at patch point");

    if (op == 0xEB || (op & 0xF0) == 0x70) {
      // short offset operators (jmp and jcc)
      char* disp = (char*) &branch[1];
      int imm8 = target - (address) &disp[1];
      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
                file == NULL ? "<NULL>" : file, line);
      *disp = imm8;
    } else {
      int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
      int imm32 = target - (address) &disp[1];
      *disp = imm32;
    }
  }

  // The following 4 methods return the offset of the appropriate move instruction

  // Support for fast byte/short loading with zero extension (depending on particular CPU)
  int load_unsigned_byte(Register dst, Address src);
  int load_unsigned_short(Register dst, Address src);

  // Support for fast byte/short loading with sign extension (depending on particular CPU)
  int load_signed_byte(Register dst, Address src);
  int load_signed_short(Register dst, Address src);

  // Support for sign-extension (hi:lo = extend_sign(lo))
  void extend_sign(Register hi, Register lo);

  // Load and store values by size and signed-ness
  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);

  // Support for inc/dec with optimal instruction selection depending on value

  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }

  void decrementl(Address dst, int value = 1);
  void decrementl(Register reg, int value = 1);

  void decrementq(Register reg, int value = 1);
  void decrementq(Address dst, int value = 1);

  void incrementl(Address dst, int value = 1);
  void incrementl(Register reg, int value = 1);

  void incrementq(Register reg, int value = 1);
  void incrementq(Address dst, int value = 1);

  // Support optimal SSE move instructions.
  void movflt(XMMRegister dst, XMMRegister src) {
    if (dst-> encoding() == src->encoding()) return;
    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
    else                       { movss (dst, src); return; }
  }
  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  void movflt(XMMRegister dst, AddressLiteral src);
  void movflt(Address dst, XMMRegister src) { movss(dst, src); }

  // Move with zero extension
  void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }

  void movdbl(XMMRegister dst, XMMRegister src) {
    if (dst-> encoding() == src->encoding()) return;
    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
    else                       { movsd (dst, src); return; }
  }

  void movdbl(XMMRegister dst, AddressLiteral src);

  void movdbl(XMMRegister dst, Address src) {
    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
    else                         { movlpd(dst, src); return; }
  }
  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }

  void incrementl(AddressLiteral dst);
  void incrementl(ArrayAddress dst);

  void incrementq(AddressLiteral dst);

  // Alignment
  void align(int modulus);
  void align(int modulus, int target);

  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  void fat_nop();

  // Stack frame creation/removal
  void enter();
  void leave();

  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  // The pointer will be loaded into the thread register.
  void get_thread(Register thread);


  // Support for VM calls
  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.


  void call_VM(Register oop_result,
               address entry_point,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  // Overloadings with last_Java_sp
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               int number_of_arguments = 0,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, bool
               check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  void get_vm_result  (Register oop_result, Register thread);
  void get_vm_result_2(Register metadata_result, Register thread);

  // These always tightly bind to MacroAssembler::call_VM_base
  // bypassing the virtual implementation
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);

  void call_VM_leaf0(address entry_point);
  void call_VM_leaf(address entry_point,
                    int number_of_arguments = 0);
  void call_VM_leaf(address entry_point,
                    Register arg_1);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2, Register arg_3);

  // These always tightly bind to MacroAssembler::call_VM_leaf_base
  // bypassing the virtual implementation
  void super_call_VM_leaf(address entry_point);
  void super_call_VM_leaf(address entry_point, Register arg_1);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);

  // last Java Frame (fills frame anchor)
  void set_last_Java_frame(Register thread,
                           Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  // thread in the default location (r15_thread on 64bit)
  void set_last_Java_frame(Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  void reset_last_Java_frame(Register thread, bool clear_fp);

  // thread in the default location (r15_thread on 64bit)
  void reset_last_Java_frame(bool clear_fp);

  // jobjects
  void clear_jweak_tag(Register possibly_jweak);
  void resolve_jobject(Register value, Register thread, Register tmp);

  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  void c2bool(Register x);

  // C++ bool manipulation

  void movbool(Register dst, Address src);
  void movbool(Address dst, bool boolconst);
  void movbool(Address dst, Register src);
  void testbool(Register dst);

  void resolve_oop_handle(Register result, Register tmp = rscratch2);
  void resolve_weak_handle(Register result, Register tmp);
  void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
  void load_method_holder_cld(Register rresult, Register rmethod);

  void load_method_holder(Register holder, Register method);

  // oop manipulations
  void load_klass(Register dst, Register src, Register tmp);
  void store_klass(Register dst, Register src, Register tmp);

  void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
                      Register tmp1, Register thread_tmp);
  void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
                       Register tmp1, Register tmp2);

  // Resolves obj access. Result is placed in the same register.
  // All other registers are preserved.
  void resolve(DecoratorSet decorators, Register obj);

  void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
                     Register thread_tmp = noreg, DecoratorSet decorators = 0);
  void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
                              Register thread_tmp = noreg, DecoratorSet decorators = 0);
  void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
                      Register tmp2 = noreg, DecoratorSet decorators = 0);

  // Used for storing NULL. All other oop constants should be
  // stored using routines that take a jobject.
  void store_heap_oop_null(Address dst);

  void load_prototype_header(Register dst, Register src, Register tmp);

#ifdef _LP64
  void store_klass_gap(Register dst, Register src);

  // This dummy is to prevent a call to store_heap_oop from
  // converting a zero (like NULL) into a Register by giving
  // the compiler two choices it can't resolve

  void store_heap_oop(Address dst, void* dummy);

  void encode_heap_oop(Register r);
  void decode_heap_oop(Register r);
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register dst, Register src);
  void decode_heap_oop_not_null(Register dst, Register src);

  void set_narrow_oop(Register dst, jobject obj);
  void set_narrow_oop(Address dst, jobject obj);
  void cmp_narrow_oop(Register dst, jobject obj);
  void cmp_narrow_oop(Address dst, jobject obj);

  void encode_klass_not_null(Register r, Register tmp);
  void decode_klass_not_null(Register r, Register tmp);
  void encode_and_move_klass_not_null(Register dst, Register src);
  void decode_and_move_klass_not_null(Register dst, Register src);
  void set_narrow_klass(Register dst, Klass* k);
  void set_narrow_klass(Address dst, Klass* k);
  void cmp_narrow_klass(Register dst, Klass* k);
  void cmp_narrow_klass(Address dst, Klass* k);

  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();

  DEBUG_ONLY(void verify_heapbase(const char* msg);)

#endif // _LP64

  // Int division/remainder for Java
  // (as idivl, but checks for special case as described in JVM spec.)
  // returns idivl instruction offset for implicit exception handling
  int corrected_idivl(Register reg);

  // Long division/remainder for Java
  // (as idivq, but checks for special case as described in JVM spec.)
  // returns idivq instruction offset for implicit exception handling
  int corrected_idivq(Register reg);

  void int3();

  // Long operation macros for a 32bit cpu
  // Long negation for Java
  void lneg(Register hi, Register lo);

  // Long multiplication for Java
  // (destroys contents of eax, ebx, ecx and edx)
  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y

  // Long shifts for Java
  // (semantics as described in JVM spec.)
  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)

  // Long compare for Java
  // (semantics as described in JVM spec.)
  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)


  // misc

  // Sign extension
  void sign_extend_short(Register reg);
  void sign_extend_byte(Register reg);

  // Division by power of 2, rounding towards 0
  void division_with_shift(Register reg, int shift_value);

#ifndef _LP64
  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
  //
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  void fcmp(Register tmp);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);

  // Floating-point comparison for Java
  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // (semantics as described in JVM spec.)
  void fcmp2int(Register dst, bool unordered_is_less);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);

  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  // tmp is a temporary register, if none is available use noreg
  void fremr(Register tmp);

  // only if +VerifyFPU
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
#endif // !LP64

  // dst = c = a * b + c
  void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
  void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);

  void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
  void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
  void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
  void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);


  // same as fcmp2int, but using SSE2
  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);

  // branch to L if FPU flag C2 is set/not set
  // tmp is a temporary register, if none is available use noreg
  void jC2 (Register tmp, Label& L);
  void jnC2(Register tmp, Label& L);

  // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
  void load_float(Address src);

  // Store float value to 'address'. If UseSSE >= 1, the value is stored
  // from register xmm0. Otherwise, the value is stored from the FPU stack.
  void store_float(Address dst);

  // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
  // register xmm0. Otherwise, the value is loaded onto the FPU stack.
  void load_double(Address src);

  // Store double value to 'address'. If UseSSE >= 2, the value is stored
  // from register xmm0. Otherwise, the value is stored from the FPU stack.
  void store_double(Address dst);

#ifndef _LP64
  // Pop ST (ffree & fincstp combined)
  void fpop();

  void empty_FPU_stack();
#endif // !_LP64

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // Round up to a power of two
  void round_to(Register reg, int modulus);

  // Callee saved registers handling
  void push_callee_saved_registers();
  void pop_callee_saved_registers();

  // allocation
  void eden_allocate(
    Register thread,                   // Current thread
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register thread,                   // Current thread
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);

  // interface method calling
  void lookup_interface_method(Register recv_klass,
                               Register intf_klass,
                               RegisterOrConstant itable_index,
                               Register method_result,
                               Register scan_temp,
                               Label& no_such_interface,
                               bool return_method = true);

  // virtual method calling
  void lookup_virtual_method(Register recv_klass,
                             RegisterOrConstant vtable_index,
                             Register method_result);

  // Test sub_klass against super_klass, with fast and slow paths.

  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  // One of the three labels can be NULL, meaning take the fall-through.
  // If super_check_offset is -1, the value is loaded up from super_klass.
  // No registers are killed, except temp_reg.
  void check_klass_subtype_fast_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     Label* L_slow_path,
                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));

  // The rest of the type check; must be wired to a corresponding fast path.
  // It does not repeat the fast path logic, so don't use it standalone.
  // The temp_reg and temp2_reg can be noreg, if no temps are available.
  // Updates the sub's secondary super cache as necessary.
  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  void check_klass_subtype_slow_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Register temp2_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     bool set_cond_codes = false);

  // Simplified, combined version, good for typical uses.
  // Falls through on failure.
  void check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success);

  void clinit_barrier(Register klass,
                      Register thread,
                      Label* L_fast_path = NULL,
                      Label* L_slow_path = NULL);

  // method handles (JSR 292)
  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);

  // Debugging

  // only if +VerifyOops
  void _verify_oop(Register reg, const char* s, const char* file, int line);
  void _verify_oop_addr(Address addr, const char* s, const char* file, int line);

  void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
    if (VerifyOops) {
      _verify_oop(reg, s, file, line);
    }
  }
  void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
    if (VerifyOops) {
      _verify_oop_addr(reg, s, file, line);
    }
  }

  // TODO: verify method and klass metadata (compare against vptr?)
  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}

#define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)

  // Verify or restore cpu control state after JNI call
  void restore_cpu_control_state_after_jni();

  // prints msg, dumps registers and stops execution
  void stop(const char* msg);

  // prints msg and continues
  void warn(const char* msg);

  // dumps registers and other state
  void print_state();

  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  static void debug64(char* msg, int64_t pc, int64_t regs[]);
  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
  static void print_state64(int64_t pc, int64_t regs[]);

  void os_breakpoint();

  void untested()                                { stop("untested"); }

  void unimplemented(const char* what = "");

  void should_not_reach_here()                   { stop("should not reach here"); }

  void print_CPU_state();

  // Stack overflow checking
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    movl(Address(rsp, (-offset)), rax);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Also, clobbers tmp
  void bang_stack_size(Register size, Register tmp);

  // Check for reserved stack access in method being exited (for JIT)
  void reserved_stack_check();

  void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);

  void verify_tlab();

  // Biased locking support
  // lock_reg and obj_reg must be loaded up with the appropriate values.
  // swap_reg must be rax, and is killed.
  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  // be killed; if not supplied, push/pop will be used internally to
  // allocate a temporary (inefficient, avoid if possible).
  // Optional slow case is for implementations (interpreter and C1) which branch to
  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  void biased_locking_enter(Register lock_reg, Register obj_reg,
                            Register swap_reg, Register tmp_reg,
                            Register tmp_reg2, bool swap_reg_contains_mark,
                            Label& done, Label* slow_case = NULL,
                            BiasedLockingCounters* counters = NULL);
  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);

  Condition negate_condition(Condition cond);

  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  // operands. In general the names are modified to avoid hiding the instruction in Assembler
  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  // here in MacroAssembler. The major exception to this rule is call

  // Arithmetics


  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  void addptr(Address dst, Register src);

  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  void addptr(Register dst, int32_t src);
  void addptr(Register dst, Register src);
  void addptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) addptr(dst, (int) src.as_constant());
    else                   addptr(dst,       src.as_register());
  }

  void andptr(Register dst, int32_t src);
  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }

  void cmp8(AddressLiteral src1, int imm);

  // renamed to drag out the casting of address to int32_t/intptr_t
  void cmp32(Register src1, int32_t imm);

  void cmp32(AddressLiteral src1, int32_t imm);
  // compare reg - mem, or reg - &mem
  void cmp32(Register src1, AddressLiteral src2);

  void cmp32(Register src1, Address src2);

#ifndef _LP64
  void cmpklass(Address dst, Metadata* obj);
  void cmpklass(Register dst, Metadata* obj);
  void cmpoop(Address dst, jobject obj);
  void cmpoop_raw(Address dst, jobject obj);
#endif // _LP64

  void cmpoop(Register src1, Register src2);
  void cmpoop(Register src1, Address src2);
  void cmpoop(Register dst, jobject obj);
  void cmpoop_raw(Register dst, jobject obj);

  // NOTE src2 must be the lval. This is NOT an mem-mem compare
  void cmpptr(Address src1, AddressLiteral src2);

  void cmpptr(Register src1, AddressLiteral src2);

  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  // cmp64 to avoild hiding cmpq
  void cmp64(Register src1, AddressLiteral src);

  void cmpxchgptr(Register reg, Address adr);

  void locked_cmpxchgptr(Register reg, AddressLiteral adr);


  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }


  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }

  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }

  void shlptr(Register dst, int32_t shift);
  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }

  void shrptr(Register dst, int32_t shift);
  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }

  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }

  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }

  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  void subptr(Register dst, int32_t src);
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void subptr_imm32(Register dst, int32_t src);
  void subptr(Register dst, Register src);
  void subptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) subptr(dst, (int) src.as_constant());
    else                   subptr(dst,       src.as_register());
  }

  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }

  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }

  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }



  // Helper functions for statistics gathering.
  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  void cond_inc32(Condition cond, AddressLiteral counter_addr);
  // Unconditional atomic increment.
  void atomic_incl(Address counter_addr);
  void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
#ifdef _LP64
  void atomic_incq(Address counter_addr);
  void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
#endif
  void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
  void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }

  void lea(Register dst, AddressLiteral adr);
  void lea(Address dst, AddressLiteral adr);
  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }

  void leal32(Register dst, Address src) { leal(dst, src); }

  // Import other testl() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::testl;
  void testl(Register dst, AddressLiteral src);

  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }

  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
  void testptr(Register src1, Register src2);

  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }

  // Calls

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register entry);
  void call(Address addr) { Assembler::call(addr); }

  // NOTE: this call transfers to the effective address of entry NOT
  // the address contained by entry. This is because this is more natural
  // for jumps/calls.
  void call(AddressLiteral entry);

  // Emit the CompiledIC call idiom
  void ic_call(address entry, jint method_index = 0);

  // Jumps

  // NOTE: these jumps tranfer to the effective address of dst NOT
  // the address contained by dst. This is because this is more natural
  // for jumps/calls.
  void jump(AddressLiteral dst);
  void jump_cc(Condition cc, AddressLiteral dst);

  // 32bit can do a case table jump in one instruction but we no longer allow the base
  // to be installed in the Address class. This jump will tranfers to the address
  // contained in the location described by entry (not the address of entry)
  void jump(ArrayAddress entry);

  // Floating

  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
  void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }

  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);

  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, AddressLiteral src);

  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, AddressLiteral src);

#ifndef _LP64
  void fadd_s(Address src)        { Assembler::fadd_s(src); }
  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }

  void fldcw(Address src) { Assembler::fldcw(src); }
  void fldcw(AddressLiteral src);

  void fld_s(int index)   { Assembler::fld_s(index); }
  void fld_s(Address src) { Assembler::fld_s(src); }
  void fld_s(AddressLiteral src);

  void fld_d(Address src) { Assembler::fld_d(src); }
  void fld_d(AddressLiteral src);

  void fmul_s(Address src)        { Assembler::fmul_s(src); }
  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
#endif // _LP64

  void fld_x(Address src) { Assembler::fld_x(src); }
  void fld_x(AddressLiteral src);

  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  void ldmxcsr(AddressLiteral src);

#ifdef _LP64
 private:
  void sha256_AVX2_one_round_compute(
    Register  reg_old_h,
    Register  reg_a,
    Register  reg_b,
    Register  reg_c,
    Register  reg_d,
    Register  reg_e,
    Register  reg_f,
    Register  reg_g,
    Register  reg_h,
    int iter);
  void sha256_AVX2_four_rounds_compute_first(int start);
  void sha256_AVX2_four_rounds_compute_last(int start);
  void sha256_AVX2_one_round_and_sched(
        XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
        XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
        XMMRegister xmm_2,     /* ymm6 */
        XMMRegister xmm_3,     /* ymm7 */
        Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
        Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
        Register    reg_c,      /* edi */
        Register    reg_d,      /* esi */
        Register    reg_e,      /* r8d */
        Register    reg_f,      /* r9d */
        Register    reg_g,      /* r10d */
        Register    reg_h,      /* r11d */
        int iter);

  void addm(int disp, Register r1, Register r2);
  void gfmul(XMMRegister tmp0, XMMRegister t);
  void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
                     XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
  void generateHtbl_one_block(Register htbl);
  void generateHtbl_eight_blocks(Register htbl);
 public:
  void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
                   Register buf, Register state, Register ofs, Register limit, Register rsp,
                   bool multi_block, XMMRegister shuf_mask);
  void avx_ghash(Register state, Register htbl, Register data, Register blocks);
#endif

#ifdef _LP64
 private:
  void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
                                     Register e, Register f, Register g, Register h, int iteration);

  void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                                          Register a, Register b, Register c, Register d, Register e, Register f,
                                          Register g, Register h, int iteration);

  void addmq(int disp, Register r1, Register r2);
 public:
  void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
                   Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
                   XMMRegister shuf_mask);
private:
  void roundEnc(XMMRegister key, int rnum);
  void lastroundEnc(XMMRegister key, int rnum);
  void roundDec(XMMRegister key, int rnum);
  void lastroundDec(XMMRegister key, int rnum);
  void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);

public:
  void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
  void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
  void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
                      Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);

#endif

  void fast_md5(Register buf, Address state, Address ofs, Address limit,
                bool multi_block);

  void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
                 XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
                 Register buf, Register state, Register ofs, Register limit, Register rsp,
                 bool multi_block);

#ifdef _LP64
  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
                   Register buf, Register state, Register ofs, Register limit, Register rsp,
                   bool multi_block, XMMRegister shuf_mask);
#else
  void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
                   XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
                   Register buf, Register state, Register ofs, Register limit, Register rsp,
                   bool multi_block);
#endif

  void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp);

#ifdef _LP64
  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);

  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                  XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                  Register rax, Register rcx, Register rdx, Register r11);

  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
                Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);

  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
                Register tmp3, Register tmp4);

  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp1,
                Register tmp2, Register tmp3, Register tmp4);
  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp1,
                Register tmp2, Register tmp3, Register tmp4);
#else
  void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp1);

  void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp);

  void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
                XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
                Register rdx, Register tmp);

  void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rbx, Register rdx);

  void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp);

  void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
                        Register edx, Register ebx, Register esi, Register edi,
                        Register ebp, Register esp);

  void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
                         Register esi, Register edi, Register ebp, Register esp);

  void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
                        Register edx, Register ebx, Register esi, Register edi,
                        Register ebp, Register esp);

  void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
                XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
                Register rax, Register rcx, Register rdx, Register tmp);
#endif

private:

  // these are private because users should be doing movflt/movdbl

  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, AddressLiteral src);

  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
  void movlpd(XMMRegister dst, AddressLiteral src);

public:

  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  void addsd(XMMRegister dst, AddressLiteral src);

  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  void addss(XMMRegister dst, AddressLiteral src);

  void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
  void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
  void addpd(XMMRegister dst, AddressLiteral src);

  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  void divsd(XMMRegister dst, AddressLiteral src);

  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  void divss(XMMRegister dst, AddressLiteral src);

  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src);
  void movdqu(XMMRegister dst, Address src);
  void movdqu(XMMRegister dst, XMMRegister src);
  void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);

  void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
  void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
  void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
  void kmovwl(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
  void kmovwl(Address dst,  KRegister src) { Assembler::kmovwl(dst, src); }
  void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); }

  void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); }
  void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); }
  void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); }
  void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); }
  void kmovql(Address  dst, KRegister src) { Assembler::kmovql(dst, src); }
  void kmovql(KRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);

  // Safe move operation, lowers down to 16bit moves for targets supporting
  // AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
  void kmov(Address  dst, KRegister src);
  void kmov(KRegister dst, Address src);
  void kmov(KRegister dst, KRegister src);
  void kmov(Register dst, KRegister src);
  void kmov(KRegister dst, Register src);

  // AVX Unaligned forms
  void vmovdqu(Address     dst, XMMRegister src);
  void vmovdqu(XMMRegister dst, Address src);
  void vmovdqu(XMMRegister dst, XMMRegister src);
  void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);

  // AVX512 Unaligned
  void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, int vector_len);
  void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, int vector_len);

  void evmovdqub(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
  void evmovdqub(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
  void evmovdqub(XMMRegister dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, src, merge, vector_len); }
  void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
  void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
  void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);

  void evmovdquw(Address dst, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
  void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
  void evmovdquw(XMMRegister dst, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, src, merge, vector_len); }
  void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
  void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);

  void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
  void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
  void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
     if (dst->encoding() == src->encoding()) return;
     Assembler::evmovdqul(dst, src, vector_len);
  }
  void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
  void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
  void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
    if (dst->encoding() == src->encoding() && mask == k0) return;
    Assembler::evmovdqul(dst, mask, src, merge, vector_len);
   }
  void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);

  void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
  void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
  void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
  void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
    if (dst->encoding() == src->encoding()) return;
    Assembler::evmovdquq(dst, src, vector_len);
  }
  void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
  void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
  void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
    if (dst->encoding() == src->encoding() && mask == k0) return;
    Assembler::evmovdquq(dst, mask, src, merge, vector_len);
  }
  void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);

  // Move Aligned Double Quadword
  void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
  void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
  void movdqa(XMMRegister dst, AddressLiteral src);

  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, AddressLiteral src);

  void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
  void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
  void mulpd(XMMRegister dst, AddressLiteral src);

  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  void mulsd(XMMRegister dst, AddressLiteral src);

  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  void mulss(XMMRegister dst, AddressLiteral src);

  // Carry-Less Multiplication Quadword
  void pclmulldq(XMMRegister dst, XMMRegister src) {
    // 0x00 - multiply lower 64 bits [0:63]
    Assembler::pclmulqdq(dst, src, 0x00);
  }
  void pclmulhdq(XMMRegister dst, XMMRegister src) {
    // 0x11 - multiply upper 64 bits [64:127]
    Assembler::pclmulqdq(dst, src, 0x11);
  }

  void pcmpeqb(XMMRegister dst, XMMRegister src);
  void pcmpeqw(XMMRegister dst, XMMRegister src);

  void pcmpestri(XMMRegister dst, Address src, int imm8);
  void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);

  void pmovzxbw(XMMRegister dst, XMMRegister src);
  void pmovzxbw(XMMRegister dst, Address src);

  void pmovmskb(Register dst, XMMRegister src);

  void ptest(XMMRegister dst, XMMRegister src);

  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  void sqrtsd(XMMRegister dst, AddressLiteral src);

  void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
  void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
  void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);

  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  void sqrtss(XMMRegister dst, AddressLiteral src);

  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  void subsd(XMMRegister dst, AddressLiteral src);

  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  void subss(XMMRegister dst, AddressLiteral src);

  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, AddressLiteral src);

  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src);
  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, XMMRegister src);
  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);

  // Shuffle Bytes
  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
  void pshufb(XMMRegister dst, AddressLiteral src);
  // AVX 3-operands instructions

  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
  void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);

  void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
  void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);

  void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);

  void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
  void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
  void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);

  void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
  void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
  void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
  void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }

  void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);

  void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);

  // Vector compares
  void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
               int comparison, int vector_len) { Assembler::evpcmpd(kdst, mask, nds, src, comparison, vector_len); }
  void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
               int comparison, int vector_len, Register scratch_reg);
  void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
               int comparison, int vector_len) { Assembler::evpcmpq(kdst, mask, nds, src, comparison, vector_len); }
  void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
               int comparison, int vector_len, Register scratch_reg);
  void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
               int comparison, int vector_len) { Assembler::evpcmpb(kdst, mask, nds, src, comparison, vector_len); }
  void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
               int comparison, int vector_len, Register scratch_reg);
  void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src,
               int comparison, int vector_len) { Assembler::evpcmpw(kdst, mask, nds, src, comparison, vector_len); }
  void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src,
               int comparison, int vector_len, Register scratch_reg);


  // Emit comparison instruction for the specified comparison predicate.
  void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, ComparisonPredicate cond, Width width, int vector_len, Register scratch_reg);
  void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);

  void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
  void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }

  void vpmovmskb(Register dst, XMMRegister src);

  void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);

  void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);

  void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
  void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);

  void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
  void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);

  void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
  void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);

  void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
  void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);

  void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
  void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);

  void vptest(XMMRegister dst, XMMRegister src);
  void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }

  void punpcklbw(XMMRegister dst, XMMRegister src);
  void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }

  void pshufd(XMMRegister dst, Address src, int mode);
  void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }

  void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }

  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
  void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
  void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register scratch_reg);

  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  // AVX Vector instructions

  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
  void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
      Assembler::vpxor(dst, nds, src, vector_len);
    else
      Assembler::vxorpd(dst, nds, src, vector_len);
  }
  void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
    if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
      Assembler::vpxor(dst, nds, src, vector_len);
    else
      Assembler::vxorpd(dst, nds, src, vector_len);
  }
  void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);

  // Simple version for AVX2 256bit vectors
  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }

  void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
  void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg);

  void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinserti32x4(dst, dst, src, imm8);
    } else if (UseAVX > 1) {
      // vinserti128 is available only in AVX2
      Assembler::vinserti128(dst, nds, src, imm8);
    } else {
      Assembler::vinsertf128(dst, nds, src, imm8);
    }
  }

  void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinserti32x4(dst, dst, src, imm8);
    } else if (UseAVX > 1) {
      // vinserti128 is available only in AVX2
      Assembler::vinserti128(dst, nds, src, imm8);
    } else {
      Assembler::vinsertf128(dst, nds, src, imm8);
    }
  }

  void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextracti32x4(dst, src, imm8);
    } else if (UseAVX > 1) {
      // vextracti128 is available only in AVX2
      Assembler::vextracti128(dst, src, imm8);
    } else {
      Assembler::vextractf128(dst, src, imm8);
    }
  }

  void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextracti32x4(dst, src, imm8);
    } else if (UseAVX > 1) {
      // vextracti128 is available only in AVX2
      Assembler::vextracti128(dst, src, imm8);
    } else {
      Assembler::vextractf128(dst, src, imm8);
    }
  }

  // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
  void vinserti128_high(XMMRegister dst, XMMRegister src) {
    vinserti128(dst, dst, src, 1);
  }
  void vinserti128_high(XMMRegister dst, Address src) {
    vinserti128(dst, dst, src, 1);
  }
  void vextracti128_high(XMMRegister dst, XMMRegister src) {
    vextracti128(dst, src, 1);
  }
  void vextracti128_high(Address dst, XMMRegister src) {
    vextracti128(dst, src, 1);
  }

  void vinsertf128_high(XMMRegister dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinsertf32x4(dst, dst, src, 1);
    } else {
      Assembler::vinsertf128(dst, dst, src, 1);
    }
  }

  void vinsertf128_high(XMMRegister dst, Address src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinsertf32x4(dst, dst, src, 1);
    } else {
      Assembler::vinsertf128(dst, dst, src, 1);
    }
  }

  void vextractf128_high(XMMRegister dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextractf32x4(dst, src, 1);
    } else {
      Assembler::vextractf128(dst, src, 1);
    }
  }

  void vextractf128_high(Address dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextractf32x4(dst, src, 1);
    } else {
      Assembler::vextractf128(dst, src, 1);
    }
  }

  // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
  void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
    Assembler::vinserti64x4(dst, dst, src, 1);
  }
  void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
    Assembler::vinsertf64x4(dst, dst, src, 1);
  }
  void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
    Assembler::vextracti64x4(dst, src, 1);
  }
  void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
    Assembler::vextractf64x4(dst, src, 1);
  }
  void vextractf64x4_high(Address dst, XMMRegister src) {
    Assembler::vextractf64x4(dst, src, 1);
  }
  void vinsertf64x4_high(XMMRegister dst, Address src) {
    Assembler::vinsertf64x4(dst, dst, src, 1);
  }

  // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
  void vinserti128_low(XMMRegister dst, XMMRegister src) {
    vinserti128(dst, dst, src, 0);
  }
  void vinserti128_low(XMMRegister dst, Address src) {
    vinserti128(dst, dst, src, 0);
  }
  void vextracti128_low(XMMRegister dst, XMMRegister src) {
    vextracti128(dst, src, 0);
  }
  void vextracti128_low(Address dst, XMMRegister src) {
    vextracti128(dst, src, 0);
  }

  void vinsertf128_low(XMMRegister dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinsertf32x4(dst, dst, src, 0);
    } else {
      Assembler::vinsertf128(dst, dst, src, 0);
    }
  }

  void vinsertf128_low(XMMRegister dst, Address src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vinsertf32x4(dst, dst, src, 0);
    } else {
      Assembler::vinsertf128(dst, dst, src, 0);
    }
  }

  void vextractf128_low(XMMRegister dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextractf32x4(dst, src, 0);
    } else {
      Assembler::vextractf128(dst, src, 0);
    }
  }

  void vextractf128_low(Address dst, XMMRegister src) {
    if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
      Assembler::vextractf32x4(dst, src, 0);
    } else {
      Assembler::vextractf128(dst, src, 0);
    }
  }

  // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
  void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
    Assembler::vinserti64x4(dst, dst, src, 0);
  }
  void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
    Assembler::vinsertf64x4(dst, dst, src, 0);
  }
  void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
    Assembler::vextracti64x4(dst, src, 0);
  }
  void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
    Assembler::vextractf64x4(dst, src, 0);
  }
  void vextractf64x4_low(Address dst, XMMRegister src) {
    Assembler::vextractf64x4(dst, src, 0);
  }
  void vinsertf64x4_low(XMMRegister dst, Address src) {
    Assembler::vinsertf64x4(dst, dst, src, 0);
  }

  // Carry-Less Multiplication Quadword
  void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    // 0x00 - multiply lower 64 bits [0:63]
    Assembler::vpclmulqdq(dst, nds, src, 0x00);
  }
  void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    // 0x11 - multiply upper 64 bits [64:127]
    Assembler::vpclmulqdq(dst, nds, src, 0x11);
  }
  void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    // 0x10 - multiply nds[0:63] and src[64:127]
    Assembler::vpclmulqdq(dst, nds, src, 0x10);
  }
  void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    //0x01 - multiply nds[64:127] and src[0:63]
    Assembler::vpclmulqdq(dst, nds, src, 0x01);
  }

  void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
    // 0x00 - multiply lower 64 bits [0:63]
    Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
  }
  void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
    // 0x11 - multiply upper 64 bits [64:127]
    Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
  }

  // Data

  void cmov32( Condition cc, Register dst, Address  src);
  void cmov32( Condition cc, Register dst, Register src);

  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }

  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }

  void movoop(Register dst, jobject obj);
  void movoop(Address dst, jobject obj);

  void mov_metadata(Register dst, Metadata* obj);
  void mov_metadata(Address dst, Metadata* obj);

  void movptr(ArrayAddress dst, Register src);
  // can this do an lea?
  void movptr(Register dst, ArrayAddress src);

  void movptr(Register dst, Address src);

#ifdef _LP64
  void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
#else
  void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
#endif

  void movptr(Register dst, intptr_t src);
  void movptr(Register dst, Register src);
  void movptr(Address dst, intptr_t src);

  void movptr(Address dst, Register src);

  void movptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) movptr(dst, src.as_constant());
    else                   movptr(dst, src.as_register());
  }

#ifdef _LP64
  // Generally the next two are only used for moving NULL
  // Although there are situations in initializing the mark word where
  // they could be used. They are dangerous.

  // They only exist on LP64 so that int32_t and intptr_t are not the same
  // and we have ambiguous declarations.

  void movptr(Address dst, int32_t imm32);
  void movptr(Register dst, int32_t imm32);
#endif // _LP64

  // to avoid hiding movl
  void mov32(AddressLiteral dst, Register src);
  void mov32(Register dst, AddressLiteral src);

  // to avoid hiding movb
  void movbyte(ArrayAddress dst, int src);

  // Import other mov() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::movdl;
  using Assembler::movq;
  void movdl(XMMRegister dst, AddressLiteral src);
  void movq(XMMRegister dst, AddressLiteral src);

  // Can push value or effective address
  void pushptr(AddressLiteral src);

  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }

  void pushoop(jobject obj);
  void pushklass(Metadata* obj);

  // sign extend as need a l to ptr sized element
  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }


 public:
  // C2 compiled method's prolog code.
  void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);

  // clear memory of size 'cnt' qwords, starting at 'base';
  // if 'is_large' is set, do not try to produce short loop
  void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);

  // clear memory initialization sequence for constant size;
  void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);

  // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
  void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);

  // Fill primitive arrays
  void generate_fill(BasicType t, bool aligned,
                     Register to, Register value, Register count,
                     Register rtmp, XMMRegister xtmp);

  void encode_iso_array(Register src, Register dst, Register len,
                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
                        XMMRegister tmp4, Register tmp5, Register result);

#ifdef _LP64
  void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
  void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
                             Register y, Register y_idx, Register z,
                             Register carry, Register product,
                             Register idx, Register kdx);
  void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
                              Register yz_idx, Register idx,
                              Register carry, Register product, int offset);
  void multiply_128_x_128_bmi2_loop(Register y, Register z,
                                    Register carry, Register carry2,
                                    Register idx, Register jdx,
                                    Register yz_idx1, Register yz_idx2,
                                    Register tmp, Register tmp3, Register tmp4);
  void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
                               Register yz_idx, Register idx, Register jdx,
                               Register carry, Register product,
                               Register carry2);
  void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
  void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
                     Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
  void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
                            Register tmp2);
  void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
                       Register rdxReg, Register raxReg);
  void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
  void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
                       Register tmp3, Register tmp4);
  void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
                     Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);

  void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
               Register raxReg);
  void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
               Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
               Register raxReg);
  void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
                           Register result, Register tmp1, Register tmp2,
                           XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
#endif

  // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
  void update_byte_crc32(Register crc, Register val, Register table);
  void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);


#ifdef _LP64
  void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
  void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
                                Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
                                Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
#endif // _LP64

  // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
  // Note on a naming convention:
  // Prefix w = register only used on a Westmere+ architecture
  // Prefix n = register only used on a Nehalem architecture
#ifdef _LP64
  void crc32c_ipl_alg4(Register in_out, uint32_t n,
                       Register tmp1, Register tmp2, Register tmp3);
#else
  void crc32c_ipl_alg4(Register in_out, uint32_t n,
                       Register tmp1, Register tmp2, Register tmp3,
                       XMMRegister xtmp1, XMMRegister xtmp2);
#endif
  void crc32c_pclmulqdq(XMMRegister w_xtmp1,
                        Register in_out,
                        uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
                        XMMRegister w_xtmp2,
                        Register tmp1,
                        Register n_tmp2, Register n_tmp3);
  void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
                       XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
                       Register tmp1, Register tmp2,
                       Register n_tmp3);
  void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
                         Register in_out1, Register in_out2, Register in_out3,
                         Register tmp1, Register tmp2, Register tmp3,
                         XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
                         Register tmp4, Register tmp5,
                         Register n_tmp6);
  void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
                            Register tmp1, Register tmp2, Register tmp3,
                            Register tmp4, Register tmp5, Register tmp6,
                            XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
                            bool is_pclmulqdq_supported);
  // Fold 128-bit data chunk
  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
#ifdef _LP64
  // Fold 512-bit data chunk
  void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
#endif // _LP64
  // Fold 8-bit data
  void fold_8bit_crc32(Register crc, Register table, Register tmp);
  void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);

  // Compress char[] array to byte[].
  void char_array_compress(Register src, Register dst, Register len,
                           XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
                           XMMRegister tmp4, Register tmp5, Register result,
                           KRegister mask1 = knoreg, KRegister mask2 = knoreg);

  // Inflate byte[] array to char[].
  void byte_array_inflate(Register src, Register dst, Register len,
                          XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);

  void fill64_masked_avx(uint shift, Register dst, int disp,
                         XMMRegister xmm, KRegister mask, Register length,
                         Register temp, bool use64byteVector = false);

  void fill32_masked_avx(uint shift, Register dst, int disp,
                         XMMRegister xmm, KRegister mask, Register length,
                         Register temp);

  void fill32_avx(Register dst, int disp, XMMRegister xmm);

  void fill64_avx(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);

#ifdef _LP64
  void convert_f2i(Register dst, XMMRegister src);
  void convert_d2i(Register dst, XMMRegister src);
  void convert_f2l(Register dst, XMMRegister src);
  void convert_d2l(Register dst, XMMRegister src);

  void cache_wb(Address line);
  void cache_wbsync(bool is_pre);

#if COMPILER2_OR_JVMCI
  void arraycopy_avx3_special_cases(XMMRegister xmm, KRegister mask, Register from,
                                    Register to, Register count, int shift,
                                    Register index, Register temp,
                                    bool use64byteVector, Label& L_entry, Label& L_exit);

  void arraycopy_avx3_special_cases_conjoint(XMMRegister xmm, KRegister mask, Register from,
                                             Register to, Register start_index, Register end_index,
                                             Register count, int shift, Register temp,
                                             bool use64byteVector, Label& L_entry, Label& L_exit);

  void copy64_masked_avx(Register dst, Register src, XMMRegister xmm,
                         KRegister mask, Register length, Register index,
                         Register temp, int shift = Address::times_1, int offset = 0,
                         bool use64byteVector = false);

  void copy32_masked_avx(Register dst, Register src, XMMRegister xmm,
                         KRegister mask, Register length, Register index,
                         Register temp, int shift = Address::times_1, int offset = 0);

  void copy32_avx(Register dst, Register src, Register index, XMMRegister xmm,
                  int shift = Address::times_1, int offset = 0);

  void copy64_avx(Register dst, Register src, Register index, XMMRegister xmm,
                  bool conjoint, int shift = Address::times_1, int offset = 0,
                  bool use64byteVector = false);
#endif // COMPILER2_OR_JVMCI

#endif // _LP64

  void vallones(XMMRegister dst, int vector_len);
};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
   ~SkipIfEqual();
};

#endif // CPU_X86_MACROASSEMBLER_X86_HPP